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Abstract—The development of socially-aware autonomous
robots for being part of our daily lives is a pressure matter.
Although almost all current robots use multiple sensors, the
limitations of these autonomous systems to coexist with people
are still evident: they have difficulties fusing all this information
in an agile and consistent way and thus understand human
intentions and act accordingly. The main consequence of these
limitations is that today’s robots do not respond adequately to
these human behaviours and, for example, result in forced and
unnatural navigation. Today’s robots strive to have complete
knowledge of the surrounding environment to make the right
decisions at the right time. However, this purpose requires a
perspective that integrates sensors of different natures and, based
on it, a multi-modal perception of actuation. This paper presents
a multi-modal and distributed architecture for the perception
of the environment that uses information given by the robot
sensors. The results of the proposed architecture are validated
in the Follow Me use a case in a real environment.

Index Terms—CORTEX, Cognitive architecture, Human-
Robot Interaction, Multi-modal perception, Distributed Robot
Systems

I. INTRODUCTION

Socially aware robotics is a term that has become a strong
force in the scientific community in the last decade. The fact
that future robots will coexist with humans is accepted in
almost all forums and for this reason, they must behave as
people would. For example, if a robot moves in a human-
populated environment, should it include some specific fea-
tures in its navigation algorithm to improve the possibility
of being accepted? Or, if this robot is going to have a
conversation with some human companion, does it have to add
new features in its Human-Robot Interaction (HRI) algorithms
to improve acceptance during the dialogue?

What is evident in this type of robot is that it should have the
skill to detect the pose of the person in a non-invasive method.
For this purpose, since their origins, robots have been provided
with sensors to estimate the people in their surroundings. The
task of detecting and tracking people is not trivial, as it is
subject to the complexity of the environment and its dynamic

Fig. 1. The Storki robot and the set of sensors for our multi-modal social
awareness people tracking algorithm.

content, the uncertainty of the algorithms and the sensors
themselves. Moreover, if the robot moves, this displacement
also reduces the accuracy of the results.

The behavior of robots when interacting with people is
a crucial factor that affects their acceptance [1]. It is hy-
pothesized that robots can behave more like humans if they
possess an attentional mechanism system capable of 1) detect
and follow people; 2) respond in a synchronized and natural
manner; and 3) use a combination of sensors such as video and
audio to recognize a person’s pose in dynamic and constantly
changing environments.

This paper presents a multi-modal social awareness sys-
tem that can detect and track individuals within a robot’s
surroundings. The system operates through the use of the
CORTEX cognitive architecture, which integrates information
from three distinct sensors: an RGBD camera, a face identifi-
cation camera, and a microphone array that determines the
position of a person in situations where they may not be
visible in the image. The attentional mechanism, understood as
an active perception system, consists on and RGBD camera
placed on a 1 DoF servo that pans around its vertical axis
at the head of the robot. In coordination with the robot’s
base, the orientable camera keeps the person followed centred
on the stream of images. After calibrating the full system,979-8-3503-0121-2/23/$31.00 ©2023 IEEE
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the control architecture integrates the information from all
sensors to estimate the person’s pose with whom the robot is
interacting. We validate this approach in the ‘Follow me’ use
case, in ideal conditions (good light, spacious areas). Figure
1 shows a schema of the mobile platform and the proposed
active perception system.

II. RELATED WORK

People detection is a common problem in most social
robotics applications. As we know from the theory of prox-
emics1, the person’s position determines where the robot
should be positioned for interacting or navigating in a socially
acceptable way [1], [2]. Recent studies are usually focused
on methods to keep human-robot engagement, such as the
work presented in [3], where authors define a multi-modal
perception model for HRI and where this detection is an
essential task. In accordance with this idea, this paper presents
a multi-modal system that enables a socially aware robot to
actively follow the person it interacts with, improving its social
behaviour [4].

There is an extensive literature of scientific works related to
human detection ( [5]–[7]). Most of these detector algorithms
suffer from a high computational load, mainly if they are
based on image processing [7]. In recent years, the number of
works based on neural networks has improved the accuracy
of the results. The latter, coupled with the fact that more and
more devices support this computational load, has enabled
performance improvement [8]. The problem of human tracking
is not new either, and many solutions have been presented
in this field. In the papers [9], and more recently [10], we
find different reviews of the best-known methods for people
tracking. Usually, these systems use one or several sensors to
track objects of interest (e.g., people) with different strategies:
from classical computer vision algorithms to neural networks.
The main disadvantage, again, is their computational cost.
Moreover, a single nature of data is insufficient in real situa-
tions when the robot moves in a highly populated environment:
people disappear for a long time (e.g., when crossing a door)
or there are many people in the environment. Our proposal
contributes to this research line by using different sources of
information that, combined, strengthen the tracking system,
always under the prism of HRI.

Socially aware robots must provide trust when interacting
with humans as a critical factor in maintaining assertive
engagement [3]. Based on this idea, our tracking proposal is
integrated into an active perception system that aims to have
the people of interest in focus. Active perception has been
widely used in robotics and computer vision. However, its
application to human tracking and its use in social robotics
applications is not widespread. In the work of [11], a network
of fixed cameras is used to track people to improve surveil-
lance. Meanwhile, in [12], they use a multi-modal system
for tracking people and mixing audio and video information.
The authors start the active search with audio information

1Proxemics studies the spaces between people during an interaction [14]

and then visual information. Our objective is different, using
information from both sources to keep the robot’s attention on
the person, prioritizing one or the other source depending on
the specific situation. Our tracking approach involves direct
action on the robot’s base and the camera itself and using the
audio information to improve the results in case of loss.

Traditionally, most active perception systems work with
moving elements using only one or two degrees of freedom
(pan-tilt) in the camera [13]. Our solution provides the co-
ordinated movement between the robot base and the RGBD
camera, as a person would do during a real interaction. The
person is the centre of interest, and the robot moves and rotates
to achieve this goal. As a contribution to this work, we include
the whole formulation for this active perception system that
integrates the motion of the robot base and the RGBD camera.

III. OVERVIEW OF THE SOCIAL AWARENESS PEOPLE
TRACKING PIPELINE AND PROBLEM DEFINITION

Our system addresses the problem of multi-modal tracking
embedded in a social robot. Both the robot base and the RGBD
camera are mobile devices that track the person of interest
to maintain their attention. To this end, the active perception
system moves the base and camera to center the person in the
acquired image. If the person disappears from the robot’s view,
the robot will start a dialogue to attract their attention. Once
the person responds, their relative orientation is estimated
using the microphone array, and the robot rotates according
to the acquired information until the person is centered. Our
social-awareness tracking pipeline is integrated into a human-
aware navigation system and in all HRIs performed by the
robot. Figure 2 provides an overview of the system and its
interconnections. A more detailed description of each element
is provided in subsequent sections.

The CORTEX cognitive architecture has been recently pro-
posed as a tool to design modular software to control intelli-
gent robots. It is based on the notion of specialized memories
(i.e., working, episodic, semantic, etc.) that are interconnected
by processing modules called agents. In CORTEX, robot activ-
ities correspond to flows of information across these memories
that are fostered by the agents. The central element in this
architecture is the Working Memory (WM)2. All the agents
share the WM, and it is their only means of communication
among them. Other memories are controlled by specific agents
that create and maintain flows of information between them
and the WM. The WM stores the robot’s internal state and
a representation of its environment relevant to the current
mission.

Formally, the WM is a directed graph defined as a pair
G = (V,E, ω) comprising V a set of vertices, E a set of
edges and an incidence function mapping every edge to an
ordered pair of vertices, ω : E 7→ {(x, y)|(x, y) ∈ V ∧ x ̸=
y}. The nodes V contain instances of the concepts known to
the system. Concepts can refer to physical or internal entities.

2The WM is also called Deep State Representation (DSR) since it can hold
heterogeneous data at different levels of abstraction
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Fig. 2. Overview of the social awareness Follow Me pipeline.

When a physical concept is instantiated into the WM by some
agent, it must be kept anchored by this agent to its world
entity during its life span. Internal entities are generated by the
agents as missions, intentions or plans and are represented in
the graph so all other agents may become aware of them. The
graph can be seen as an active representation of the context
that is relevant to the current mission.

Our system comprises of an instance of the CORTEX
architecture that runs in the NUC computer at 20Hz and a
set of connected components that run in the Orin computer at
up to 60Hz. These faster components implement the human
detection and tracking pipeline and the orientable camera
controller. A diagram illustrating these two elements and their
connection can be seen in Fig. 2.

The human detection pipeline starts with the camera RGBD
stream acquisition, which is then processed by a YOLOv7
DNN optimized for Nvidia3 to extract person-labelled regions.
Then, the trt-pose DNN4 extracts the skeleton of each region
and adds it to the list of detected people. Finally, the list
is processed by the ByteTrack algorithm to create a list of
known people and stabilize their identifiers by performing
Kalman prediction on the unmatched ROIs and an optimal
alignment with the Hungarian algorithm and the Intersection
over Union (IoU) metric. Additionally, the Orin computer runs
another component controlling the servo to engage and track
a selected person from the list of known people. When the
Orin starts, these components take control of the camera,
implementing an inhibition of return (IOR) dynamics. The IOR
mechanism selects a human target randomly and tracks them
for a period of time before switching to another individual
who has not been recently visited. This process continues until

3https://github.com/Linaom1214/TensorRT-For-YOLO-Series
4https://github.com/NVIDIA-AI-IOT/trt pose

the CORTEX instance is initiated, at which point the list of
recognized individuals is obtained from the Orin computer and
the agents prepare to begin a mission. The Follow Me mission
commences when an individual approaches the robot, captures
its attention, is identified by the Realsense Face ID camera, and
issues the command ”Follow Me”. The robot then designates
that person as the new target and proceeds to follow them.

The CORTEX instance used here includes a WM shared by
a set of agents:

• Human capturer agent: receives information about de-
tected individuals and updates the graph nodes accord-
ingly. Existing data is updated, disappeared individuals
are deleted, and new individuals are inserted into the
graph.

• Human identification agent: extracts and stores the names
of individuals appearing in an image as an attribute in the
corresponding node representing that person.

• HRI agent: engages in conversations with the individual
in case of loss or when the individual initiates dialogue
or a new mission. It also detects the keyword for robot
call and the direction of the voice signal.

• ‘Follow me’ agent: oversees and controls the ongoing
mission, issuing commands to the robot base. It modi-
fies edges in the WM to reflect the mission’s progress,
particularly during interactions initiated by humans. Ad-
ditionally, the agent responds to changes in the WM, such
as the loss of the tracked person, by modifying edges to
inform other agents of the situation.

IV. MULTI-MODAL PEOPLE TRACKING ALGORITHM

This section contains the core technical work. The different
modalities include the person tracking system, person identifi-
cation and human localization based on audio signals. We then
describe the data fusion from different sources and conclude
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with the displacement of the camera base and servo that make
up the active perception system proposed in the paper. Let H
be the set of all the persons hi detected by the robot. Each
hi ∈ H , is defined in the CORTEX architecture as a person
node with the following information hi = {pi, si, idi, fi, di},
where pi is the 6D pose of the person, (x, y, θ)i, si the set of
3D joints that make up its skeleton, idi is the person’s iden-
tifier, fi is the identifier obtained from the facial recognizer,
and di is the distance from the human to the robot.

A. Human detection and tracking based on video modality

The video modality consists of a skeleton point-tracking
algorithm. Our social robot uses an orientable RGBD camera.
The extrinsic parameters of the camera are calibrated after
positioning them on the robot. Human pose detection and
tracking: to track a human in front of the robot robustly, we
use a method that takes the output of the YOLOv7 DNN [17]
and feeds it to the ByteTracker [18] tracking algorithm. The
system accepts, as input at time τ , a color image T of size w
x h and generates, as output, the 3D location and orientation
of each person in the image pi and it’s track identifier idi. The
image is processed by YOLOv7, which returns the people’s
ROIs Bi = {ai, bi}, being ai and bi the top-left and bottom-
right points. When a person is detected, a track is started using
the ByteTracker algorithm, obtaining the idi. The 3D pose
from the robot’s perspective is obtained from the central pixel
Oi =

{
axi+

bxi−axi
2 , ayi+

byi−ayi
2

}
value of the ROI of the

stereo image.
When obtaining individual ROIs, the person 2D pose es-

timation of each one is obtained through NVidia TRTpose
two-branch CNN, returning the candidate body joints Jτ

h (u, v).
The set Jτ

h (u, v) has a 3D correspondence, which is referenced
to centre of the robot, Jτ

h (x, y, z) = {J1, J2, ..., JN}. These
values are also calculated directly from stereo images. From
the set Jτh(x, y, z), we select the subset sτ ⊂ Jh(x, y, z),
composed of those values that have been observed by the
camera in the previous kt frames, as long as their value do
not exceed the threshold ΘJi

:

(Jτ
i − J̇)

Jτ
i

≤ ΘJi (1)

where J̇ = 1
kT

∑τ=kt

τ=0 J i
τ−kt

is the mean values of this key
point in the kt previous frames. From the set sτ , we estimate
the orientation θi, we first define the vectors αi, βi, where αi

is that of the mean values of the left skeleton joints with the
centroid of the person, and βi is the equivalent on the right
side. Finally, θi is obtained through the vector product defined
by θi = αi × βi.

In our algorithm, each new human in the CORTEX archi-
tecture (node in the WM) is assigned a unique identifier, idi.
Figure 3 illustrates the bounding box of the persons detected
by the algorithm.

B. Human identification

The goal of this stage is to achieve personalized HRI that
enhance social acceptance. Person recognition is performed

Fig. 3. People’s ROIs with the associated Jτh(x, y, z) joints.

using a Face ID camera, and facial authentication is obtained
using a dedicated system-on-chip. The result of this algorithm
is an identifier (fi) for each person previously recognized by
the camera, which updates the corresponding node (hi) in the
DSR.

C. Human localization based on audio modality

The audio modality aims to estimate the position of the
person interacting with the robot. The proposed algorithm uses
a Voice Activity Detector (VAD), with the goal of discrim-
inating people talking from the rest of the ambient sound.
Once this voice signal is detected, the algorithm estimates its
localization. While most existing solutions work with a single
microphone, the provided proposal uses a far-field microphone
array device capable of detecting voices up to 5m away.

To localize the sound source, we use the well-known SRP-
PHAT method (Steered Response Power-Phase Transform)
[15], [16]. This algorithm uses the PHAT (Phase Transform)
weighting to compute the General Cross Correlation (GCC)
technique for each pair of microphones within the array.

D. Fusing multi-modal inputs for human tracking

The next stage merges the information from both modalities
so that the resulting information has less uncertainty than
would be possible when these sources are used individually.
The direct fusion of the data is not performed on the total data
of the person’s position since the information provided by the
audio modality only affects the person’s orientation concerning
the robot. In this sense, the person’s localization pi(x, y)
is estimated only from the video modality. The orientation
information pi(θ) provided by the audio modality will only
be added if there is no information about the person in the
video mode.

E. Attention control

The detection and subsequent tracking method of people
proposed in this work are integrated within an attention mecha-
nism that aims to provide the robot with social skills during its
navigation and interaction with people. The perception of the
environment and the search for the person are done actively.
Thus, once the person’s location is estimated, the proposed
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Fig. 4. a) Starting situation: the position of the person is known to the robot;
b) The attentional mechanism modifies the speeds and final positions of the
robot base and the camera servo.

system addresses the problem of focusing its attention on
the person. The mathematical formula that provides the robot
with this social ability is described below. Our system focuses
the interest in the person through the combined movement of
the robot base and this camera. We formulate this combined
displacement for both the base and the camera: the result is a
smooth and socially aware motion, just as a person would do
during a conversation.

We first describe the final position of the camera and the
servo velocity during the movement. Let be the case described
in Fig. 4, where the person is displaced er concerning the
centre of the image. This er is defined as the rotational
distance between the person’s centre and the image, measured
in radians. Then, we formulate the rotational servo speed
(rad/s) Ṗr as:

Ṗr = (kerer + kėr ėr)
kd
di

(2)

where ėr is the difference between the last and actual rotational
distance (rad), and ker , kėr are adaptable coefficients for er,
and ėr, respectively. The value of both ker , kėr must be tuned
according to the features of the servo. The coefficient kd

di
is

intended to regulate the speed, increasing it when the distance
of the person from the robot di is less than kd. Its purpose is
to deal with the fact that the shorter the distance, the faster
the movement of the servo is required to keep the person in
the image.

We estimate the final camera position (i.e., final servo
position, in radians) from the equation:

P c
r = or − kerer (3)

being or the current servo position. The Eq. 3 shows how
the motion of the camera servo is directly coupled with the
displacement of the person. Next equations describe both ḃr
(rad/s), ḃa (m/s) and ḃs (m/s), the rotational, advance and side
velocities of the robot, respectively:

ḃr = arctan(
py
px

) (4)

where px and py are the x and y positions of the human relative
to the robot.

ḃa = ḃmax ·G(ḃr) ·H(ḋ) (5)

Algorithm 1 Calculation of servo velocity and position
er ← (pv − v)/2
ėr ← eτr − eτ−1

r

P c
r ← or − kerer

Ṗ e
r ← kerer + kėr ėr

Ṗr =

{
max value, if abs(er) ≥ Θer

Ṗ e
r, otherwise

Fig. 5. Metrics obtained from the experiment.

being ḃamax
the maximum advance speed of robotic base

(m/s), ḋ is the difference between the reference distance and
the actual person to robot distance, G(ḃr) is the Gaussian
equation for rotational speed dependent speed control: e−kGḃr ,
and H(ḋ) is defined as the Hyperbolic tangent equation for
distance to human dependent direction and speed control:

H =
ekHd − e−kHd

ekHd + e−kHd
(6)

where kG and kH are free parameters to modify the Gaussian
and the hyperbolic tangent slope.

ḃs = ḃsmaxkpx (7)

Where ḃsmax is the maximum side speed of robotic base (m/s),
and kpx

a coefficient that reduces side speed when px tends to
0. The algorithm 1 describes the calculation of servo position
and velocity from the position of the person. In our case, we
use the position in pixels of the person pv at τ in an image
of size (u× v).
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V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Robotic platform

Storki is a custom build robot made of an omnidirectional
base, an orientable head and a large-size tactile display, see
Fig. 1. The head is equipped with an Intel RealSense D455
stereo camera, and an Intel RealSense Face ID F450 used for
face identification. It also includes a commercial microphone
circular array from SeeedStudio5. This array has 4 MEMS
microphones forming a circle with a diameter of 6.48 cm. The
head has been designed with a pan DoF using a Dynamixel
R64 servo. The RGBD camera and the servo are connected
to the Orin’s USB ports. The robot is also equipped with an
embedded NUC i7 computer, where the CORTEX instance is
run.

B. Follow Me use case

Initially, the robot remains in a waiting state while it has
no visual contact with the human. The person might call the
robot at some point using a keyword, and at that moment
the robot initiates the rotation process based on an estimation
of the direction of the speaker. Once in alignment with the
person, a two-part process of detection and recognition of
the person takes place. The interaction between the robot
and the person takes place in the form of a dialogue after a
positive identification. The action begins when the person uses
the tracking keyword (”follow me”) 6. Fig. 5 shows, along a
tracking process, both the distance between the person and the
robot and the normalised values of the orientation of the base
in the range [−π/2, π/2], and the deviation of the centre of the
ROI with respect to the centre of the image in the case of the
camera tracking the person. On the other hand, the sections in
which the person is moving are defined.

The independence between the visual tracking system and
the motion control of the base becomes apparent as the user
moves around. The visual system has greater agility and the
ability to track the person against the base moving. Obstacles
and a slower rotation speed increase the convergence time
of the alignment to the person. Fig. 6b shows the moments
before the person’s loss. The visual system is able to correct
the displacement of the person at a higher speed, while the
base follows a similar adjustment process at a lower speed,
arriving at the loss of the person as soon as he or she leaves
the robot’s field of vision. The tracking process resumes once
the person has been re-identified. If the individual stops, as
can be seen in Fig. 6a, the robot will correctly orient itself
towards the individual and approach until it reaches a socially
acceptable distance.

VI. CONCLUSIONS

This paper describes a multi-modal and distributed system
for person tracking for social robots. The main objective is
to develop an attentional mechanism that actively focuses its

5https://seedstudio.com
6The video of the full experiment can be viewed at https://drive.google.

com/file/d/1tOIdBa37hdRMPJ1ycUy BKYVc4TbvS1x/view?usp=share link.

attention on the person with whom the robot interacts. The
system uses video (RGBD sensors) and audio modalities to
estimate the location of people of interest and adds a unique
identifier to have personalized dialogues. The data fusion is
performed in real-time and is accessible for use in high-level
robot behaviours. In particular, we have validated the proposed
solution on Follow Me use case.
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